Brolis Semiconductors develops cutting-edge hybrid GaSb/Si laser sensor technology for next generation wearable and handheld devices. New technology exploits CMOS IC fabrication process technology opening opportunity for consumer market applications. Our approach utilizes “best-of-both-worlds” approach, where we take our in-house made high performance type-I GaSb laser sources and combine them with photonic integrated circuits based silicon-on-insulator technology on a single chip. Brolis was part of the joint with Ghent University to demonstrate world’s first widely tunable hybrid GaSb/Si laser in the end of 2016. Since 2017, Brolis has incorporated a dedicated R&D location for silicon photonics in Ghent, Belgium and is actively pushing a radically new approach for non-invasive healthcare integrated sensors technology targeting most important blood constituents such as lactates, albumin, glucose and urea.

Our sensor technology has several patent applications pending.

  • Proprietary hybrid GaSb/Si integrated sensor technology
  • 1400 nm – 2500 nm wavelength range
  • In-house design, manufacturing and testing
  • Standard CMOS fabrication process
  • Blood constituent sensing
  • Consumer market compatible technology

For more inquiries, contact us directly at info

Publications and white papers:

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, G. Roelkens, “III-V -on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range,” Sensors, Vo. 17, No. 8, 1788, (2017); doi:10.3390/s17081788

R.Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers”, Optics Express, Vol. 24, No. 25, pp. 28977-28986 (2016), 

I. Šimonytė, E. Dvinelis, R. Songaila, A. Trinkūnas, M. Greibus, K. Vizbaras, A. Vizbaras, “High-power CW GaSb type-I gain-chips as single-frequency sources for widely tunable spectroscopy in the mid-infrared,” Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII, 97550J (13 February 2016); doi: 10.1117/12.2207461;

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, A. Vizbaras, ” High power continuous-wave GaSb-based superluminescent diodes as gain-chips for widely tunabl laser specroscopy in the 1.95-2.45 μm wavelength range,” Appl. Phys. Lett. 107, 011103 (2015);

E. Dvinelis, A. Trinkūnas, M. Greibus, M. Kaušylas, T. Žukauskas, I. Šimonytė, R. Songaila, A. Vizbaras, K. Vizbaras, “High-performance GaSb laser didoes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications,” Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93702E (8 February 2015); doi: 10.1117/12.2076115;

A. Vizbaras, E. Dvinelis, A. Trinkūnas, I. Šimonytė, M. Greibus, M. Kaušylas, T. Žukauskas, R. Songaila, K. Vizbaras, “High-performance mid-infrared GaSb laser diodes for defence and sensing applications,” Proc. SPIE 9081, Laser Technology for Defense and Security X, 90810P (9 June 2014); doi: 10.1117/12.2054493;

A. Vizbaras, M. Greibus, E. Dvinelis, A. Trinkūnas, D. Kovalenkovas, I. Šimonytė, “Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm,” Proc. SPIE 9002, Novel In-Plane Semiconductor Lasers XIII, 900214 (27 February 2014); doi: 10.1117/12.2036528;

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 μm,” Proc. SPIE 8993, Quantum Sensing and Nanophotonic Devices XI, 899319 (31 January 2014); doi: 10.1117/12.2036523;